2020事业单位考试职测解题技巧:数学运算中的概率问题

时间:2020-07-28 21:13:28 来源:

【摘要】 小编整理了2020事业单位考试职测解题技巧:数学运算中的概率问题的相关内容,下面一起来看看2020事业单位考试职测解题技巧:数学运算中的概率问题的具体内容吧,希望能够帮助到大家!

2020事业单位考试职测解题技巧:数学运算中的概率问题

2020事业单位考试职测解题技巧:数学运算中的概率问题

例:销售员小刘为客户准备了A、B、C三个方案。已知客户接受方案A的概率为40%。如果接受方案A,则接受方案B的概率为60%,反之为30%。客户如果A或B方案都不接受,则接受C方案的概率为90%,反之为10%,问将3个方案按照客户接受概率从高到低排列,以下正确的是:

A.A>B>C B.A>C>B C.B>A>C D.C>B>A

这道题目告诉我们什么呢?说是的客户对于小刘提供的ABC三个方案的接受与否的概率信息,让我们解决每种方案接受的概率大小问题。既然是解决概率,我们要看题干告诉的关于接受A、B、C的概率条件。这时我们可以发现,除A以外,BC方案的接受概率都会随着另外的方案去变化,条件较多,我们整理一下:

①接受A为40%;

②接受A后,接受B为60%;

③不接受A后,接受B为30%;

④AB都不接受,接受C为90%;

⑤AB中接受了一种或两种,接受C为10%。

此时我们发现,如果想求B或者C的概率,就要去找到哪些情况下B、C会发生,以B为例,B发生可以是②也可以是③,此时②和③的关系类似于排列组合中的分类,分类的方法数计算用加法,这里概率计算同样用加法,即接受B的概率等于②③概率之和。

那我们继续分析②,接受A之后,接受B为60%,接受A之后再接受B,在40%的基础上再发生一个60%,类似于排列组合问题中的分步,分步的方法数计算用乘法,这里概率计算同样用乘法,所以②对应的概率为40%×60%=24%。

同理,③中是不接受A再接受B,概率依旧相乘,为(1-40%)×30%=18%。

所以接受B的概率为24%+18%=42%。

分析清楚B之后,再来看C,想要接受C可以是④也可以是⑤,分类关系,故接受C的概率为④⑤概率的和。

在④中,AB都接受,再接受C,分步关系,概率应相乘;AB都不接受其实就是不接受A并且不接受B,概率为60%×(1-30%)=42%,所以④发生的概率为42%×90%=37.8%。

在⑤中,AB至少接受一个即为AB都接受的反面,概率为1-42%=58%,此时接受C的概率为10%,故⑤发生的概率为58%×10%=5.8%。

那么接受C的概率就为37.8%+5.8%=43.6%。

此时得出结论,C>B>A,选D选项。

以上就是2020事业单位考试职测解题技巧:数学运算中的概率问题的内容,更多资讯请及时关注考必过网站,小编会第一时间发布考试最新消息,大家考试加油!

上一篇      下一篇
事业单位相关推荐 更多>>
事业单位热点专题 更多>>
热点问答
国家公务员考试年龄限制是多少 公务员国考和省考考试内容有什么区别 函授大专学历能不能考公务员 国家公务员考试考点能自己选择吗 新闻学专业能报考2022年公务员考试吗 什么是联合培养研究生 什么是破格录取研究生 什么人不适合读研 研究生报名户口所在地填什么 研究生结业和毕业有什么区别
网站首页 网站地图 返回顶部
考必过移动版 https://m.kaobiguo.net